Copied to
clipboard

G = C23×D23order 368 = 24·23

Direct product of C23 and D23

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C23×D23, C23⋊C24, C46⋊C23, (C22×C46)⋊3C2, (C2×C46)⋊4C22, SmallGroup(368,41)

Series: Derived Chief Lower central Upper central

C1C23 — C23×D23
C1C23D23D46C22×D23 — C23×D23
C23 — C23×D23
C1C23

Generators and relations for C23×D23
 G = < a,b,c,d,e | a2=b2=c2=d23=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 1256 in 134 conjugacy classes, 83 normal (5 characteristic)
C1, C2, C2, C22, C22, C23, C23, C24, C23, D23, C46, D46, C2×C46, C22×D23, C22×C46, C23×D23
Quotients: C1, C2, C22, C23, C24, D23, D46, C22×D23, C23×D23

Smallest permutation representation of C23×D23
On 184 points
Generators in S184
(1 104)(2 105)(3 106)(4 107)(5 108)(6 109)(7 110)(8 111)(9 112)(10 113)(11 114)(12 115)(13 93)(14 94)(15 95)(16 96)(17 97)(18 98)(19 99)(20 100)(21 101)(22 102)(23 103)(24 122)(25 123)(26 124)(27 125)(28 126)(29 127)(30 128)(31 129)(32 130)(33 131)(34 132)(35 133)(36 134)(37 135)(38 136)(39 137)(40 138)(41 116)(42 117)(43 118)(44 119)(45 120)(46 121)(47 148)(48 149)(49 150)(50 151)(51 152)(52 153)(53 154)(54 155)(55 156)(56 157)(57 158)(58 159)(59 160)(60 161)(61 139)(62 140)(63 141)(64 142)(65 143)(66 144)(67 145)(68 146)(69 147)(70 169)(71 170)(72 171)(73 172)(74 173)(75 174)(76 175)(77 176)(78 177)(79 178)(80 179)(81 180)(82 181)(83 182)(84 183)(85 184)(86 162)(87 163)(88 164)(89 165)(90 166)(91 167)(92 168)
(1 87)(2 88)(3 89)(4 90)(5 91)(6 92)(7 70)(8 71)(9 72)(10 73)(11 74)(12 75)(13 76)(14 77)(15 78)(16 79)(17 80)(18 81)(19 82)(20 83)(21 84)(22 85)(23 86)(24 50)(25 51)(26 52)(27 53)(28 54)(29 55)(30 56)(31 57)(32 58)(33 59)(34 60)(35 61)(36 62)(37 63)(38 64)(39 65)(40 66)(41 67)(42 68)(43 69)(44 47)(45 48)(46 49)(93 175)(94 176)(95 177)(96 178)(97 179)(98 180)(99 181)(100 182)(101 183)(102 184)(103 162)(104 163)(105 164)(106 165)(107 166)(108 167)(109 168)(110 169)(111 170)(112 171)(113 172)(114 173)(115 174)(116 145)(117 146)(118 147)(119 148)(120 149)(121 150)(122 151)(123 152)(124 153)(125 154)(126 155)(127 156)(128 157)(129 158)(130 159)(131 160)(132 161)(133 139)(134 140)(135 141)(136 142)(137 143)(138 144)
(1 38)(2 39)(3 40)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 24)(11 25)(12 26)(13 27)(14 28)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)(21 35)(22 36)(23 37)(47 70)(48 71)(49 72)(50 73)(51 74)(52 75)(53 76)(54 77)(55 78)(56 79)(57 80)(58 81)(59 82)(60 83)(61 84)(62 85)(63 86)(64 87)(65 88)(66 89)(67 90)(68 91)(69 92)(93 125)(94 126)(95 127)(96 128)(97 129)(98 130)(99 131)(100 132)(101 133)(102 134)(103 135)(104 136)(105 137)(106 138)(107 116)(108 117)(109 118)(110 119)(111 120)(112 121)(113 122)(114 123)(115 124)(139 183)(140 184)(141 162)(142 163)(143 164)(144 165)(145 166)(146 167)(147 168)(148 169)(149 170)(150 171)(151 172)(152 173)(153 174)(154 175)(155 176)(156 177)(157 178)(158 179)(159 180)(160 181)(161 182)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)(24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69)(70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)(93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115)(116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138)(139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161)(162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184)
(1 103)(2 102)(3 101)(4 100)(5 99)(6 98)(7 97)(8 96)(9 95)(10 94)(11 93)(12 115)(13 114)(14 113)(15 112)(16 111)(17 110)(18 109)(19 108)(20 107)(21 106)(22 105)(23 104)(24 126)(25 125)(26 124)(27 123)(28 122)(29 121)(30 120)(31 119)(32 118)(33 117)(34 116)(35 138)(36 137)(37 136)(38 135)(39 134)(40 133)(41 132)(42 131)(43 130)(44 129)(45 128)(46 127)(47 158)(48 157)(49 156)(50 155)(51 154)(52 153)(53 152)(54 151)(55 150)(56 149)(57 148)(58 147)(59 146)(60 145)(61 144)(62 143)(63 142)(64 141)(65 140)(66 139)(67 161)(68 160)(69 159)(70 179)(71 178)(72 177)(73 176)(74 175)(75 174)(76 173)(77 172)(78 171)(79 170)(80 169)(81 168)(82 167)(83 166)(84 165)(85 164)(86 163)(87 162)(88 184)(89 183)(90 182)(91 181)(92 180)

G:=sub<Sym(184)| (1,104)(2,105)(3,106)(4,107)(5,108)(6,109)(7,110)(8,111)(9,112)(10,113)(11,114)(12,115)(13,93)(14,94)(15,95)(16,96)(17,97)(18,98)(19,99)(20,100)(21,101)(22,102)(23,103)(24,122)(25,123)(26,124)(27,125)(28,126)(29,127)(30,128)(31,129)(32,130)(33,131)(34,132)(35,133)(36,134)(37,135)(38,136)(39,137)(40,138)(41,116)(42,117)(43,118)(44,119)(45,120)(46,121)(47,148)(48,149)(49,150)(50,151)(51,152)(52,153)(53,154)(54,155)(55,156)(56,157)(57,158)(58,159)(59,160)(60,161)(61,139)(62,140)(63,141)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,169)(71,170)(72,171)(73,172)(74,173)(75,174)(76,175)(77,176)(78,177)(79,178)(80,179)(81,180)(82,181)(83,182)(84,183)(85,184)(86,162)(87,163)(88,164)(89,165)(90,166)(91,167)(92,168), (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,70)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,85)(23,86)(24,50)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,65)(40,66)(41,67)(42,68)(43,69)(44,47)(45,48)(46,49)(93,175)(94,176)(95,177)(96,178)(97,179)(98,180)(99,181)(100,182)(101,183)(102,184)(103,162)(104,163)(105,164)(106,165)(107,166)(108,167)(109,168)(110,169)(111,170)(112,171)(113,172)(114,173)(115,174)(116,145)(117,146)(118,147)(119,148)(120,149)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,157)(129,158)(130,159)(131,160)(132,161)(133,139)(134,140)(135,141)(136,142)(137,143)(138,144), (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,24)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,37)(47,70)(48,71)(49,72)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79)(57,80)(58,81)(59,82)(60,83)(61,84)(62,85)(63,86)(64,87)(65,88)(66,89)(67,90)(68,91)(69,92)(93,125)(94,126)(95,127)(96,128)(97,129)(98,130)(99,131)(100,132)(101,133)(102,134)(103,135)(104,136)(105,137)(106,138)(107,116)(108,117)(109,118)(110,119)(111,120)(112,121)(113,122)(114,123)(115,124)(139,183)(140,184)(141,162)(142,163)(143,164)(144,165)(145,166)(146,167)(147,168)(148,169)(149,170)(150,171)(151,172)(152,173)(153,174)(154,175)(155,176)(156,177)(157,178)(158,179)(159,180)(160,181)(161,182), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161)(162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184), (1,103)(2,102)(3,101)(4,100)(5,99)(6,98)(7,97)(8,96)(9,95)(10,94)(11,93)(12,115)(13,114)(14,113)(15,112)(16,111)(17,110)(18,109)(19,108)(20,107)(21,106)(22,105)(23,104)(24,126)(25,125)(26,124)(27,123)(28,122)(29,121)(30,120)(31,119)(32,118)(33,117)(34,116)(35,138)(36,137)(37,136)(38,135)(39,134)(40,133)(41,132)(42,131)(43,130)(44,129)(45,128)(46,127)(47,158)(48,157)(49,156)(50,155)(51,154)(52,153)(53,152)(54,151)(55,150)(56,149)(57,148)(58,147)(59,146)(60,145)(61,144)(62,143)(63,142)(64,141)(65,140)(66,139)(67,161)(68,160)(69,159)(70,179)(71,178)(72,177)(73,176)(74,175)(75,174)(76,173)(77,172)(78,171)(79,170)(80,169)(81,168)(82,167)(83,166)(84,165)(85,164)(86,163)(87,162)(88,184)(89,183)(90,182)(91,181)(92,180)>;

G:=Group( (1,104)(2,105)(3,106)(4,107)(5,108)(6,109)(7,110)(8,111)(9,112)(10,113)(11,114)(12,115)(13,93)(14,94)(15,95)(16,96)(17,97)(18,98)(19,99)(20,100)(21,101)(22,102)(23,103)(24,122)(25,123)(26,124)(27,125)(28,126)(29,127)(30,128)(31,129)(32,130)(33,131)(34,132)(35,133)(36,134)(37,135)(38,136)(39,137)(40,138)(41,116)(42,117)(43,118)(44,119)(45,120)(46,121)(47,148)(48,149)(49,150)(50,151)(51,152)(52,153)(53,154)(54,155)(55,156)(56,157)(57,158)(58,159)(59,160)(60,161)(61,139)(62,140)(63,141)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,169)(71,170)(72,171)(73,172)(74,173)(75,174)(76,175)(77,176)(78,177)(79,178)(80,179)(81,180)(82,181)(83,182)(84,183)(85,184)(86,162)(87,163)(88,164)(89,165)(90,166)(91,167)(92,168), (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,70)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,85)(23,86)(24,50)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,65)(40,66)(41,67)(42,68)(43,69)(44,47)(45,48)(46,49)(93,175)(94,176)(95,177)(96,178)(97,179)(98,180)(99,181)(100,182)(101,183)(102,184)(103,162)(104,163)(105,164)(106,165)(107,166)(108,167)(109,168)(110,169)(111,170)(112,171)(113,172)(114,173)(115,174)(116,145)(117,146)(118,147)(119,148)(120,149)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,157)(129,158)(130,159)(131,160)(132,161)(133,139)(134,140)(135,141)(136,142)(137,143)(138,144), (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,24)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,37)(47,70)(48,71)(49,72)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79)(57,80)(58,81)(59,82)(60,83)(61,84)(62,85)(63,86)(64,87)(65,88)(66,89)(67,90)(68,91)(69,92)(93,125)(94,126)(95,127)(96,128)(97,129)(98,130)(99,131)(100,132)(101,133)(102,134)(103,135)(104,136)(105,137)(106,138)(107,116)(108,117)(109,118)(110,119)(111,120)(112,121)(113,122)(114,123)(115,124)(139,183)(140,184)(141,162)(142,163)(143,164)(144,165)(145,166)(146,167)(147,168)(148,169)(149,170)(150,171)(151,172)(152,173)(153,174)(154,175)(155,176)(156,177)(157,178)(158,179)(159,180)(160,181)(161,182), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138)(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161)(162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184), (1,103)(2,102)(3,101)(4,100)(5,99)(6,98)(7,97)(8,96)(9,95)(10,94)(11,93)(12,115)(13,114)(14,113)(15,112)(16,111)(17,110)(18,109)(19,108)(20,107)(21,106)(22,105)(23,104)(24,126)(25,125)(26,124)(27,123)(28,122)(29,121)(30,120)(31,119)(32,118)(33,117)(34,116)(35,138)(36,137)(37,136)(38,135)(39,134)(40,133)(41,132)(42,131)(43,130)(44,129)(45,128)(46,127)(47,158)(48,157)(49,156)(50,155)(51,154)(52,153)(53,152)(54,151)(55,150)(56,149)(57,148)(58,147)(59,146)(60,145)(61,144)(62,143)(63,142)(64,141)(65,140)(66,139)(67,161)(68,160)(69,159)(70,179)(71,178)(72,177)(73,176)(74,175)(75,174)(76,173)(77,172)(78,171)(79,170)(80,169)(81,168)(82,167)(83,166)(84,165)(85,164)(86,163)(87,162)(88,184)(89,183)(90,182)(91,181)(92,180) );

G=PermutationGroup([[(1,104),(2,105),(3,106),(4,107),(5,108),(6,109),(7,110),(8,111),(9,112),(10,113),(11,114),(12,115),(13,93),(14,94),(15,95),(16,96),(17,97),(18,98),(19,99),(20,100),(21,101),(22,102),(23,103),(24,122),(25,123),(26,124),(27,125),(28,126),(29,127),(30,128),(31,129),(32,130),(33,131),(34,132),(35,133),(36,134),(37,135),(38,136),(39,137),(40,138),(41,116),(42,117),(43,118),(44,119),(45,120),(46,121),(47,148),(48,149),(49,150),(50,151),(51,152),(52,153),(53,154),(54,155),(55,156),(56,157),(57,158),(58,159),(59,160),(60,161),(61,139),(62,140),(63,141),(64,142),(65,143),(66,144),(67,145),(68,146),(69,147),(70,169),(71,170),(72,171),(73,172),(74,173),(75,174),(76,175),(77,176),(78,177),(79,178),(80,179),(81,180),(82,181),(83,182),(84,183),(85,184),(86,162),(87,163),(88,164),(89,165),(90,166),(91,167),(92,168)], [(1,87),(2,88),(3,89),(4,90),(5,91),(6,92),(7,70),(8,71),(9,72),(10,73),(11,74),(12,75),(13,76),(14,77),(15,78),(16,79),(17,80),(18,81),(19,82),(20,83),(21,84),(22,85),(23,86),(24,50),(25,51),(26,52),(27,53),(28,54),(29,55),(30,56),(31,57),(32,58),(33,59),(34,60),(35,61),(36,62),(37,63),(38,64),(39,65),(40,66),(41,67),(42,68),(43,69),(44,47),(45,48),(46,49),(93,175),(94,176),(95,177),(96,178),(97,179),(98,180),(99,181),(100,182),(101,183),(102,184),(103,162),(104,163),(105,164),(106,165),(107,166),(108,167),(109,168),(110,169),(111,170),(112,171),(113,172),(114,173),(115,174),(116,145),(117,146),(118,147),(119,148),(120,149),(121,150),(122,151),(123,152),(124,153),(125,154),(126,155),(127,156),(128,157),(129,158),(130,159),(131,160),(132,161),(133,139),(134,140),(135,141),(136,142),(137,143),(138,144)], [(1,38),(2,39),(3,40),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,24),(11,25),(12,26),(13,27),(14,28),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34),(21,35),(22,36),(23,37),(47,70),(48,71),(49,72),(50,73),(51,74),(52,75),(53,76),(54,77),(55,78),(56,79),(57,80),(58,81),(59,82),(60,83),(61,84),(62,85),(63,86),(64,87),(65,88),(66,89),(67,90),(68,91),(69,92),(93,125),(94,126),(95,127),(96,128),(97,129),(98,130),(99,131),(100,132),(101,133),(102,134),(103,135),(104,136),(105,137),(106,138),(107,116),(108,117),(109,118),(110,119),(111,120),(112,121),(113,122),(114,123),(115,124),(139,183),(140,184),(141,162),(142,163),(143,164),(144,165),(145,166),(146,167),(147,168),(148,169),(149,170),(150,171),(151,172),(152,173),(153,174),(154,175),(155,176),(156,177),(157,178),(158,179),(159,180),(160,181),(161,182)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23),(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69),(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92),(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115),(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138),(139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161),(162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184)], [(1,103),(2,102),(3,101),(4,100),(5,99),(6,98),(7,97),(8,96),(9,95),(10,94),(11,93),(12,115),(13,114),(14,113),(15,112),(16,111),(17,110),(18,109),(19,108),(20,107),(21,106),(22,105),(23,104),(24,126),(25,125),(26,124),(27,123),(28,122),(29,121),(30,120),(31,119),(32,118),(33,117),(34,116),(35,138),(36,137),(37,136),(38,135),(39,134),(40,133),(41,132),(42,131),(43,130),(44,129),(45,128),(46,127),(47,158),(48,157),(49,156),(50,155),(51,154),(52,153),(53,152),(54,151),(55,150),(56,149),(57,148),(58,147),(59,146),(60,145),(61,144),(62,143),(63,142),(64,141),(65,140),(66,139),(67,161),(68,160),(69,159),(70,179),(71,178),(72,177),(73,176),(74,175),(75,174),(76,173),(77,172),(78,171),(79,170),(80,169),(81,168),(82,167),(83,166),(84,165),(85,164),(86,163),(87,162),(88,184),(89,183),(90,182),(91,181),(92,180)]])

104 conjugacy classes

class 1 2A···2G2H···2O23A···23K46A···46BY
order12···22···223···2346···46
size11···123···232···22···2

104 irreducible representations

dim11122
type+++++
imageC1C2C2D23D46
kernelC23×D23C22×D23C22×C46C23C22
# reps11411177

Matrix representation of C23×D23 in GL4(𝔽47) generated by

1000
04600
0010
0001
,
1000
04600
00460
00046
,
46000
0100
0010
0001
,
1000
0100
00161
001136
,
46000
0100
002041
004327
G:=sub<GL(4,GF(47))| [1,0,0,0,0,46,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,46,0,0,0,0,46,0,0,0,0,46],[46,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,16,11,0,0,1,36],[46,0,0,0,0,1,0,0,0,0,20,43,0,0,41,27] >;

C23×D23 in GAP, Magma, Sage, TeX

C_2^3\times D_{23}
% in TeX

G:=Group("C2^3xD23");
// GroupNames label

G:=SmallGroup(368,41);
// by ID

G=gap.SmallGroup(368,41);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-23,8804]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^23=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽